Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways.
نویسندگان
چکیده
DNA interstrand cross-links (ICLs) are complex DNA lesions generated by bifunctional alkylating agents, a class of compounds extensively used in cancer chemotherapy. Formation of an ICL covalently links the opposing strands of the double helix and results in severe disruptions of normal DNA functions, such as replication, transcription, and recombination. Because of the structural complexity, ICLs are most likely recognized by a variety of repair recognition proteins and processed through multiple mechanisms. To study the involvement of different repair pathways in ICL processing, we examined a variety of mammalian mutants with distinct DNA repair deficiencies. We found that the presence of ICLs induces frequent recombination between direct repeat sequences, suggesting that the single-strand annealing pathway may be an important mechanism for the removal of ICLs situated within direct repeats. Unlike recombination-independent ICL repair, ICL-induced single-strand annealing does not require the nucleotide excision repair (NER) mechanism. In cells defective in the mismatch repair protein Msh2, the level of recombination-independent ICL repair was significantly increased, suggesting that processing by the mismatch repair mechanism may lead to recombinational repair of ICLs. Our results suggest that removal of ICLs may involve two error-prone mechanisms depending on the sequence context of the cross-linked site.
منابع مشابه
The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel Pso2-independent pathways of DNA interstrand crosslink repair in yeast
DNA interstrand cross-links (ICLs) represent a physical barrier to the progression of cellular machinery involved in DNA metabolism. Thus, this type of adduct represents a serious threat to genomic stability and as such, several DNA repair pathways have evolved in both higher and lower eukaryotes to identify this type of damage and restore the integrity of the genetic material. Human cells poss...
متن کاملDNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone rep...
متن کاملA role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites.
Interstrand DNA-DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are "unhooked" by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link...
متن کاملTargeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide.
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammali...
متن کاملMERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links.
MERIT40 is an essential component of the RAP80 ubiquitin recognition complex that targets BRCA1 to DNA damage sites. Although this complex is required for BRCA1 foci formation, its physiologic role in DNA repair has remained enigmatic, as has its relationship to canonical DNA repair mechanisms. Surprisingly, we found that Merit40(-/-) mice displayed marked hypersensitivity to DNA interstrand cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA repair
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2006